A lower bound for the size of the result
array in a Karatsuba algorithm by R. E.
Maeder
Stefan Krah
skrah@cm org

May 31, 2009

Abstract

This paper attempts to correct the lower bound for the size of the resajtiara
Karatsuba multiplication algorithm by R. E. Maeder.

Keywords: Karatsuba multiplication, storage allocation

1 Introduction

In [2] R. E. Maeder presents a Karatsuba multiplication atgm with low storage
requirements and a single allocation strategy. For the éeanp space he proves a
sharp bound for the minimum storage requirements.

This paper focuses on the bound given for the size of thetragaly, which is too

low in some cases.

2 The algorithm

The karatsuba function is a direct quote from [2]. All poistpoint to arrays of basB
digits. ¢ andb are the factors; is the result array and is the temporary work space.

1 void

karatsuba(digit *a, digit b, digit =c,

/] add the product of a and b to c.
Il we assume la > 1b > [la/2]. ¢ nust be la+Ilb+1 in size
/1 the array wis used as a work array (tenporary storage)

digit *w, int la, int Ib)

2

3 if (la<=4) { /] use naive nethod

4 long_nultiplication(a, b, c, la, Ib);

5 return;

6 }

7 m= (la+l)/2; Il [la/2]

8 copyto(w + 0, a + 0, nm; Il ag,...,am_1 iNtO wg,..., Whp_1

9 wm = 0; [l clear carry digit

10 addto(w+ 0, a+m la - m; [l forma+ap, into wog,...,wn,

11 copyto(w + (mtl), b + 0, nm; Il boy...,bjp—1 1Nt O Wya1,...,Wam

12 w mrl+n]i = O; /1 clear carry digit

13 addto(w + (m#t1l), b + m Ib - nm; // formb+b, into wpir,..., Wamt1
Il conpute (a; + ap)(by + bp) INtO ¢,y .y Camat

14 karatsuba(w + 0, w+ (ml), ¢ +m w+ 2x(ml), mtl, mtl);

15 It =(la-mM + (lb-mM + 1; /'l space needed for apb,

16 clear(w + 0, It); /1 clear result array
/] conpute apb, iNto wo,..., Wiarp—2m—1

17 karatsuba(a + m b+ m w+ 0, w+It, la-m Ib - nm;

18 addto(c + 2»xm w, (la - m + (Ib - m); // add a,b,B*"
19 subfromc + m w, (la- m + (Ib m)

: /] subtract apb,B™

20 It = m+ m+ 1; /'l space needed for a;b;

21 clear(w + 0, It); /1 clear result array
[l compute a;b; into wg,...,wom_1

22 karatsuba(a, b, w+ 0, w+ It, m m;

23 addto(c + 0, w, m+ m; /1 add a;b;

24 subfromc + m w, m+ m; !/l subtract aq;b,B™

25 return;
26 }

3 Allocation for the result array

The algorithm allocate&: + b + 1 units of storage for the result array c. However,
this is not sufficient in a number of cases. We focus on redezdtls of karatsuba()
in line 14 until the base case is reached. Each call consumes| la/2] units ofc,
and the base case call of long_multiplication() negdsunits. If we substitute: for

la, the total amount of storage required fobcthis particular path in the call treeis
given by this recursive equation, whéie: is the limit for the base case.

@)

2n if n <lim
cspace(n) =

| 2L | + cspace(| 2 | +1) otherwise

Sincela + b + 1 might be greater thasspace(la), the minimum allocation foe
is given by:

max(cspace(la), la + b + 1) 2

In the following subsection we prove a sharp upper bounadpace(n). If la <
lim, clearly the bounda + b + 1 is valid, so we only consider the cake> lim.

Theorem 3.1. An upper bound for cspace(n) is given by:

n+1
2

Proof. A formal proof written for the ACL2 theorem prover [1] is prided in appendix
A. This is an outline of the main steps:

cespace(n) < 3(|

|+1), for lim >4, n > lim (©)]

Forlim > 4, n > lim, cspace(n) terminates withn decreasing in each call. This
paves the way for a well founded induction.

Assuming
n+1 |2 +141
cspace(_Tj +1) < 3(L%J +1) (hypl)
n+1
=6+3(| 1 1),
we need to show:
cspace(n) = | n;L ! |+ cspace(LnTHj +1) 4)
<1m5) vers(™) ©)
<312)+) ©

Omitting the details of the formal proof, we state that threntén (5) is indeed less
or equal than the term i(6) for n > 8. Forn < 8, the formal proof resorts to case
analysis to show directly that the theorem holds.

In the case that > lim, but| 2 | + 1 < lim, we must show:

espace(n) = | "o~ |+ 2| "] +1) ™
<32+ ®

This is clearly true.
O

It remains to analyse the other two recursive calls, wliennits of storage are
reserved for the result array.

In line 22, karatsuba() is called witla’ = b’ = m, with It = 2la’ + 1. Since
2la’ 4+ 1 is a valid bound fola’ < lim, andcspace(la’) < 2la’ + 1, this call is safe.

Inline 17,la’ = la — m, I/ =1b—m, la’ > b/, with it = la’ + b’ + 1. Herelt
might be too low. To amend this, line 15 could be replacedtby (la — m) + (la —
m) —+ 1, or by using(2). Thew array has enough space for both options.

References

[1] M. Kaufmann and J. S. Moore. ACL2 Theorem Provért t p: / / www. CS.
ut exas. edu/ ~noor e/ acl 2/ .

[2] R. E. Maeder. Sorage allocation for the Karatsuba integer multiplication algo-
rithm, pages 59-65. Lecture Notes in Computer Science. SpringdinB Heidel-
berg, 1993. http://www.springerlink.com/content/w186§6v59t565/.

A The formal proof

As promised, here is the complete formal proof of theorenmBitten for the ACL2
theorem prover. This file should also be available as cslEre the same directory
as this paper:

;; Books containing hel per theorens.
(i nclude-book "arithmetic/top-with-nmeta" :dir :system
(i nclude-book "arithmetic-2/floor-nmod/floor-nod" :dir :system

;7 Amount of menory needed for ¢ when following a certain call path.
(defun cspace (n lim
(declare (xargs :guard (and (natp n)
(natp I'im
(<=41im)
cverify-guards nil))
(and (<=4 1im
(if (<= (nfix n) lim
(» 2 n)
(let ((m(floor (+ n 1) 2)))
(+ m(cspace (+ m1) lim)))))

(deft hm nat p- cspace
(inmplies (and (natp n) (natp lim (<=41im)
(natp (cspace nlim))
:rul e-cl asses :type-prescription)

(verify-guards cspace)

Rewriting floor in terns of nod frequently hel ps.
(defthnd fl oor-to-nod
(implies (and (< 0 m (rationalp m
(rationalp x))
(equal (floor x m

(- (/ xm (/ (mod x m m))))

(defthm | erma- la
(inplies (and (< 0 m (natp m
(natp n))
(<= (+ (» 4 (mod n M)
(- (» 3 (mdn (x2m))))
m)

:rul e-classes :linear)

(defthm | emma- 1b
(inmplies (and (< 8 n) (natp n))
(<= (+ 3 (* 3 (floor (+ 1 n) 4)))
(*» 2 (floor (+ 1 n) 2))))
chints (("Goal" :use ((:instance floor-to-nod
(x (+ 1))
(m2))
(:instance floor-to-nod
(x (+ 1))
(m4)))))

:rul e-cl asses :linear)

;; For n <= 8 case analysis is required.
(defthnmd upper - bound- n<=8
(implies (and (<=4 1im (< limn) (<= n 8)
(natp Iinm) (natp n))
(<= (cspace nlim
(» 3 (+ 1 (floor (+n 1) 2)))))
chints (("Subgoal *1/5'" :cases ((=nb5) (=n&6) (=n7) (=n8)))))

;; The upper bound for cspace.
(defthnd upper-bound
(inplies (and (<=4 1im (< limn)
(natp Iinm) (natp n))
(<= (cspace n lim
(» 3 (+ 1 (floor (+n 1) 2)))))
chints (("CGoal" :induct t)
("Subgoal *1/2.1'" :use (upper-bound-n<=8))))

