
A lower bound for the size of the result
array in a Karatsuba algorithm by R. E.

Maeder

Stefan Krah
skrah@acm.org

May 31, 2009

Abstract

This paper attempts to correct the lower bound for the size of the result array in a
Karatsuba multiplication algorithm by R. E. Maeder.

Keywords: Karatsuba multiplication, storage allocation

1 Introduction

In [2] R. E. Maeder presents a Karatsuba multiplication algorithm with low storage
requirements and a single allocation strategy. For the temporary space he proves a
sharp bound for the minimum storage requirements.

This paper focuses on the bound given for the size of the result array, which is too
low in some cases.

2 The algorithm

The karatsuba function is a direct quote from [2]. All pointers point to arrays of baseB
digits. a andb are the factors,c is the result array andw is the temporary work space.

1 void
karatsuba(digit *a, digit *b, digit *c, digit *w, int la, int lb)

// add the product of a and b to c.
// we assume la ≥ lb > ⌈ la/2 ⌉. c must be la+ lb +1 in size
// the array w is used as a work array (temporary storage)

2 {
3 if (la <= 4) { // use naive method
4 long_multiplication(a, b, c, la, lb);
5 return;
6 }
7 m = (la+1)/2; // ⌈ la/2 ⌉
8 copyto(w + 0, a + 0, m); // a0, . . . , am−1 into w0, . . . , wm−1

9 w[m] = 0; // clear carry digit
10 addto(w + 0, a + m, la - m); // form al + ah into w0, . . . , wm

11 copyto(w + (m+1), b + 0, m); // b0, . . . , bm−1 into wm+1, . . . , w2m

12 w[m+1+m] = 0; // clear carry digit
13 addto(w + (m+1), b + m, lb - m); // form bl + bh into wm+1, . . . , w2m+1

// compute (al + ah)(bl + bh) into cm, . . . , c3m+1

14 karatsuba(w + 0, w + (m+1), c + m, w + 2*(m+1), m+1, m+1);
15 lt = (la - m) + (lb - m) + 1; // space needed for ahbh

16 clear(w + 0, lt); // clear result array
// compute ahbh into w0, . . . , wla+lb−2m−1

17 karatsuba(a + m, b + m, w + 0, w + lt, la - m, lb - m);

1



18 addto(c + 2*m, w, (la - m) + (lb - m)); // add ahbhB2m

19 subfrom(c + m, w, (la - m) + (lb - m)); // subtract ahbhBm

20 lt = m + m + 1; // space needed for albl

21 clear(w + 0, lt); // clear result array
// compute albl into w0, . . . , w2m−1

22 karatsuba(a, b, w + 0, w + lt, m, m);
23 addto(c + 0, w, m + m); // add albl

24 subfrom(c + m, w, m + m); // subtract alblB
m

25 return;
26 }

3 Allocation for the result array

The algorithm allocatesla + lb + 1 units of storage for the result array c. However,
this is not sufficient in a number of cases. We focus on repeated calls of karatsuba()
in line 14 until the base case is reached. Each call consumesm = ⌈ la/2 ⌉ units ofc,
and the base case call of long_multiplication() needs2la units. If we substituten for
la, the total amount of storage required for cby this particular path in the call tree is
given by this recursive equation, wherelim is the limit for the base case.

cspace(n) =

{

2n if n ≤ lim

⌊ n+1

2
⌋ + cspace(⌊ n+1

2
⌋ + 1) otherwise

(1)

Sincela + lb + 1 might be greater thancspace(la), the minimum allocation forc
is given by:

max(cspace(la), la + lb + 1) (2)

In the following subsection we prove a sharp upper bound forcspace(n). If la ≤
lim, clearly the boundla + lb + 1 is valid, so we only consider the casela > lim.

Theorem 3.1. An upper bound for cspace(n) is given by:

cspace(n) ≤ 3(⌊
n + 1

2
⌋ + 1), for lim ≥ 4, n > lim (3)

Proof. A formal proof written for the ACL2 theorem prover [1] is provided in appendix
A. This is an outline of the main steps:

For lim ≥ 4, n > lim, cspace(n) terminates withn decreasing in each call. This
paves the way for a well founded induction.

Assuming

cspace(⌊
n + 1

2
⌋ + 1) ≤ 3(⌊

⌊ n+1

2
⌋ + 1 + 1

2
⌋ + 1) (hyp1)

= 6 + 3(⌊
n + 1

4
⌋),

we need to show:

cspace(n) = ⌊
n + 1

2
⌋ + cspace(⌊

n + 1

2
⌋ + 1) (4)

≤ ⌊
n + 1

2
⌋ + 6 + 3(⌊

n + 1

4
⌋) (5)

≤ 3(⌊
n + 1

2
⌋ + 1) (6)

2



Omitting the details of the formal proof, we state that the term in (5) is indeed less
or equal than the term in(6) for n > 8. For n ≤ 8, the formal proof resorts to case
analysis to show directly that the theorem holds.

In the case thatn > lim, but⌊ n+1

2
⌋ + 1 ≤ lim, we must show:

cspace(n) = ⌊
n + 1

2
⌋ + 2(⌊

n + 1

2
⌋ + 1) (7)

≤ 3(⌊
n + 1

2
⌋ + 1) (8)

This is clearly true.

It remains to analyse the other two recursive calls, wherelt units of storage are
reserved for the result arrayw.

In line 22, karatsuba() is called withla′ = lb′ = m, with lt = 2la′ + 1. Since
2la′ + 1 is a valid bound forla′ ≤ lim, andcspace(la′) < 2la′ + 1, this call is safe.

In line 17,la′ = la − m, lb′ = lb − m, la′ ≥ lb′, with lt = la′ + lb′ + 1. Herelt
might be too low. To amend this, line 15 could be replaced bylt = (la − m) + (la −
m) + 1, or by using(2). Thew array has enough space for both options.

References

[1] M. Kaufmann and J. S. Moore. ACL2 Theorem Prover.http://www.cs.
utexas.edu/~moore/acl2/.

[2] R. E. Maeder. Storage allocation for the Karatsuba integer multiplication algo-
rithm, pages 59–65. Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 1993. http://www.springerlink.com/content/w15058mj6v59t565/.

A The formal proof

As promised, here is the complete formal proof of theorem 3.1written for the ACL2
theorem prover. This file should also be available as cspace.lisp in the same directory
as this paper:

;; Books containing helper theorems.
(include-book "arithmetic/top-with-meta" :dir :system)
(include-book "arithmetic-2/floor-mod/floor-mod" :dir :system)

;; Amount of memory needed for c when following a certain call path.
(defun cspace (n lim)
(declare (xargs :guard (and (natp n)

(natp lim)
(<= 4 lim))

:verify-guards nil))
(and (<= 4 lim)

(if (<= (nfix n) lim)
(* 2 n)

(let ((m (floor (+ n 1) 2)))
(+ m (cspace (+ m 1) lim))))))

3



(defthm natp-cspace
(implies (and (natp n) (natp lim) (<= 4 lim))

(natp (cspace n lim)))
:rule-classes :type-prescription)

(verify-guards cspace)

;; =====================================================
;; Tight upper bound: 3 * (ceil(n/2) + 1)
;; =====================================================

;; Rewriting floor in terms of mod frequently helps.
(defthmd floor-to-mod
(implies (and (< 0 m) (rationalp m)

(rationalp x))
(equal (floor x m)

(- (/ x m) (/ (mod x m) m)))))

(defthm lemma-1a
(implies (and (< 0 m) (natp m)

(natp n))
(<= (+ (* 4 (mod n m))

(- (* 3 (mod n (* 2 m)))))
m))

:rule-classes :linear)

(defthm lemma-1b
(implies (and (< 8 n) (natp n))

(<= (+ 3 (* 3 (floor (+ 1 n) 4)))
(* 2 (floor (+ 1 n) 2))))

:hints (("Goal" :use ((:instance floor-to-mod
(x (+ 1 n))
(m 2))

(:instance floor-to-mod
(x (+ 1 n))
(m 4)))))

:rule-classes :linear)

;; For n <= 8 case analysis is required.
(defthmd upper-bound-n<=8
(implies (and (<= 4 lim) (< lim n) (<= n 8)

(natp lim) (natp n))
(<= (cspace n lim)

(* 3 (+ 1 (floor (+ n 1) 2)))))
:hints (("Subgoal *1/5’’" :cases ((= n 5) (= n 6) (= n 7) (= n 8)))))

;; The upper bound for cspace.
(defthmd upper-bound
(implies (and (<= 4 lim) (< lim n)

(natp lim) (natp n))
(<= (cspace n lim)

(* 3 (+ 1 (floor (+ n 1) 2)))))
:hints (("Goal" :induct t)

("Subgoal *1/2.1’" :use (upper-bound-n<=8))))

4


